

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours/Programme 4th Semester Examination, 2020

CMSHGEC04T/CMSGCOR04T-COMPUTER SCIENCE (GE4/DSC4)

Time Allotted: 2 Hours Full Marks: 40

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

Answer Question No. 1 and any four questions from the rest

GROUP-A

1.		Answer any <i>four</i> questions from the following:	2×4 =8
	(a)	What are the differences between time-sharing system and multiprogramming system?	
	(b)	Simplify the given expression using Boolean Algebra	
		A + AB' + A'B	
	(c)	How does the floating-point number represents in computer system?	
	(d)	What is the function of DMA?	

- (a) What is the function of Bivir.
- (e) What is Peripheral Component Interconnect (PCI)?
- (f) Write down the generic expression to convert (number)x to (number)y, where x and y are bases.
- (g) Why MUX is functionally complete?
- (h) What is a modulus counter?

GROUP-B

	Answer any four questions from the following	$8 \times 4 = 32$
2.	(a) Define a decoder.	2
	(b) Draw the logic diagram of a 3-to-8 decoder.	3
	(c) What is the advantage of 2's complement system over 1's complement? Using 2's complement add $(+38)_{10}$ and $(-22)_{10}$.	3

CBCS/B.Sc./Hons./Programme/4th Sem./CMSHGEC04T/CMSGCOR04T/2020

3.	(a)	The ALU of an IAS computer contains a Memory Buffer Register (MBR), an Accumulator (AC) and a Multiplier-Quotient (MQ) and the Program Control Unit (CU) contains a Memory Address Register (MAR), an Instruction Register (IR), and a Program Counter (PC). Explain the functionality of each unit.	6
	(b)	Write down the behavior of a tri-state switching device.	2
4.	(a)	Discuss about different modes of data transfer inside a simple computer system.	5
	(b)	What is SCSI? How does SCSI differs from PCI?	3
5.	(a)	Define flip-flop.	2
	(b)	What is SR flip-flop? Draw NAND-based SR flip-flop.	2+2
	(c)	Write down the basic applications of flip-flop.	2
6.	(a)	Design a counter which counts 0, 1, 2, 3, 4, 5, 6, 7 sequentially.	4
	(b)	Simplify the following Boolean expression: $f(a,b,c,d) = \Sigma(0,1,2,3,7,11,15)$ in SOP form.	4
7.	(a)	Explain One and Zero address instructions with suitable example.	4
	(b)	Describe Register Indirect and Immediate addressing modes with proper example.	4
8.	(a)	Simplify the expression $Y = \Sigma m(7, 9, 10, 11, 12, 13, 14, 15)$ using the K-map method.	4
	(b)	Discuss any two Memory-reference instructions.	4

N.B.: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

___×__

2

4208