

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 6th Semester Examination, 2021

PHSADSE04T-PHYSICS (DSE3/4)

Time Allotted: 2 Hours Full Marks: 50

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

Answer Question No.1 and any two questions from the rest

1. Answer any *fifteen* questions from the following:

 $2 \times 15 = 30$

- (a) For a Poisson distribution; P(x = 0) = P(x = 1) find the P(x > 0).
- (b) What do you mean by proper subset? Explain with an example.
- (c) Distinguish between Onto and Into mapping.
- (d) If N is the set of all positive integers, then show that division and subtraction are not binary operations in N.
- (e) When can a binary relation be called an equivalence relation?
- (f) For what value of a will be the function f(x) = ax; x = 1,2,3,...n be the probability mass function of a discrete random variable x?
- (g) Show that the set of matrices $A_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, where α is real forms a group under multiplication.
- (h) Prove that if event A and B are independent, \overline{A} and \overline{B} are also independent.
- (i) Show that the identity of a subgroup of a group is the same as that of the group.
- (j) Show that the intersection of any two normal subgroups of a groups is a normal subgroup.
- (k) If (R, \cdot) be a multiplicative group and $x \in R$, then find homomorphisms and their kernels in the mapping $x \to |x|$.
- (1) What do you mean by faithful representation? Give an example.
- (m) If in an experiment with random outcome the number of outcomes favouring an event A is less than the number of outcomes favouring event B in a large number of trials N, show that P(A) < P(B). The symbols have their usual meaning.
- (n) A dice is rolled six times. Find the probability that each of the six faces appears only once.
- (o) If $f(x) = e^{-x}$, $0 \le x \le \infty$ show that it is a probability density function and find it's mean.
- (p) Write down the limitations of separation of variable technique of solving partial differential equation.

CBCS/B.Sc./Hons./6th Sem./PHSADSE04T/2021

- (q) Explain with example, what are homogeneous and non-homogeneous partial differential equations.
- (r) Show that if there exists a relation among the three variables x, y, z like f(x, y, z) = 0, then show that $\left(\frac{\partial x}{\partial y}\right) \left(\frac{\partial y}{\partial z}\right) \left(\frac{\partial z}{\partial x}\right)_{y} = -1$.
- (s) For what value of x and y the equation

$$(y+1)\frac{\partial^2 u}{\partial x^2} + 2x\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = x + y$$

is parabolic?

- (t) Write down the Laplace's equation in spherical polar coordinates.
- 2. (a) Define order of an element of a group. Prove that the order of an element a of a group is the same as that of its inverse a^{-1} .
 - (b) Show that the group formed by the set $(1, \omega, \omega^2)$, α being cube root of unity, is a cyclic group of order 3 with respect to multiplication.
 - (c) Write down orthogonality theorem for the Irreducible representation of a group and prove it.
- 3. (a) Find the regular permutation group isomorphic to the group G = (a, b, c, d) with the composition table.
 - (b) If a matrix commutes with all the matrices of an irreducible representation, then show that it is a multiple of unit matrix.
 - (c) For any two events A and B, the probability that either A or B or both occur is given by $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- 4. (a) Consider the Gaussian distribution $\rho(x) = Ae^{-\lambda(x-a)^2}$, where A, a, λ are constants. Determine σ^2 .
 - (b) If A and B are two events such that $P(A) = \frac{3}{8}$, $P(B) = \frac{5}{8}$ and $P(A \cup B) = \frac{3}{4}$, find $P(\frac{A}{B})$ and $P(\frac{B}{A})$. Are A and B independent?
 - (c) If X denotes a random variable having binomial distribution with mean 6 and variance 3. Obtain $P(X \ge 1)$.
- 5. (a) Solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ where u = 0 for $t = \infty$ and for x = 0 or 1.
 - (b) Solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2} = 0$ for $0 < x < \pi$, $0 < y < \pi$ subject to the conditions $u(0, y) = u(\pi, y) = u(x, \pi) = 0 \text{ and } u(x, 0) = \sin^2 x.$
 - N.B.: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

____×___