

## WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 4th Semester Examination, 2020

## PHSACOR08T-PHYSICS (CC8)

Time Allotted: 2 Hours Full Marks: 40

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

## Question No. 1 is compulsory and answer any two from the rest

1. Answer any *ten* questions from the following:

 $2 \times 10 = 20$ 

- (a) If z = x + iy, show that  $|\sin z|^2 = \sin^2 x + \sinh^2 y$ .
- (b) Evaluate  $\oint f(z)dz$  for f(z) = 1/z along the circle of radius R centred at origin.
- (c) Show that  $f(z) = \sin z/z$  has a removable singularity at z = 0.
- (d) Find the branch points of  $f(z) = \sqrt{(z^2 + 1)}$ .
- (e) f(z) = u(x, y) + iv(x, y) is analytic where  $u = x^2 y^2$ . Find v.
- (f) Prove that if f(x) is periodic with period a then Fourier transform  $\tilde{f}(k) = 0$  unless  $ka = 2\pi n$  for n being an integer.
- (g) If Fourier transform of f(x) is g(s), then show that Fourier transform of  $f(x)\cos ax$  is  $\frac{1}{2}[g(a+s)+g(a-s)]$ .
- (h) Find Fourier transform of a Dirac delta function  $f(x) = \delta(x-b)$ , b being some constant.
- (i) What kind of boundary condition do you need for unique solution of Laplace equation in a bound smooth domain?
- (j) Show that real and imaginary parts of an analytic complex function individually satisfy Laplace's equation in two dimensions.
- (k) For a 2  $\times$  2 square matrix A find its eigenvalues in terms of t and d, given Tr(A) = t and det(A) = d.
- (l) Prove that the product of two Hermitian matrices is Hermitian if and only if they commute.
- (m) Find eigenvalues of matrix  $\mathbf{R} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ .
- (n) Pauli spin matrix  $\sigma_x$  is conventionally written as,  $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ . Find  $\sin \alpha \sigma_x$ ,  $\alpha$  being a constant.
- 2. (a) State with justification, whether or not the function f(z) = Re(z) = x is analytic. 1+2+1 Find the Laurent Series of  $f(z) = \frac{1}{z(z-2)^3}$  about the singularity z=2 and find the residue of f(z) at z=2.

4027 1 Turn Over

## CBCS/B.Sc./Hons./4th Sem./PHSACOR08T/2020

- (b) Solve using Fourier Transform  $\frac{d^2\phi}{dx^2} m^2\phi = f(x)$ , in terms of an integral, m 2 being some constant.
- (c) Verify Caley-Hamilton theorem for the matrix  $\mathbf{A} = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$ , and hence find  $\mathbf{A}^{-1}$ . 2+2
- 3. (a) Expand  $f(z) = \frac{1}{z(z-1)}$  in a Laurent series valid for 1 < |z-2| < 2.
  - (b) In physical optics, Fraunhofer diffraction pattern is given by Fourier transform of the aperture function. Suppose the aperture function (for a single slit),

$$f(x) = \begin{cases} 1, & |x| < a, \\ 0, & |x| > a, \end{cases}$$

Calculate F(t), the amplitude of the diffraction pattern. Use Parseval relation to calculate

$$\int_{-\infty}^{\infty} \frac{\sin^2 t}{t^2} dt.$$

(c) An uncharged conducting sphere of radius R is placed in a uniform electrostatic field  $\vec{E} = E_0 \hat{k}$ . Find the potential outside the sphere using solution of Laplace's equation in spherical polar coordinates.

4

3

4

3

4. (a) Evaluate the following integral,

$$I = \oint_C \frac{z+1}{z^4 + 2iz^3} dz,$$

where C is the circle |z|=1.

- (b) What is meant by the Fourier transform of a function f(x)? Show that under complex conjugation Fourier transform of a real function f(x) satisfies  $\tilde{f}(-k) = [\tilde{f}(k)]^*$ .
- (c) Solve one dimensional heat equation,

$$\frac{\partial u(x, t)}{\partial t} = \frac{\partial^2 u(x, t)}{\partial x^2},$$

for t > 0 and  $u(x, 0) = \delta(x)$ .

5. (a) Evaluate the integral

$$I = \int_{0}^{2\pi} \frac{\mathrm{d}\theta}{5 + 4\cos\theta}$$

(b) Find the eigenvalues of  $\mathbf{H} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ .

Also show that its diagonalizing matrix (which makes it diagonal by similarity transformation) can be chosen to be orthogonal.

**N.B.:** Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

