

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 1st Semester Examination, 2019

ELSACOR02T-ELECTRONICS (CC2)

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

GROUP-A

1. Answer any *five* questions:

 $2 \times 5 = 10$

(a) Find the degree and order of differential equation

$$\sqrt{3\frac{d^3y}{dx^3}} + 6x^2\frac{dy}{dx} + \cos x = 0$$

- (b) State polar and exponential form of complex number.
- (c) What is analytic function?
- (d) Prove that $\log(1+i) = \frac{1}{2}\log 2 + \frac{i\pi}{4}$.
- (e) What are Hermitian and Skew-Hermitian matrices?
- (f) Write down differential equation of a linear harmonic oscillator. Mention all the parameters.
- (g) Prove that the series $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \infty$ is convergent and converges to 1.
- (h) Show that (1+i) and (1-i) are the eigen values of the matrix

$$\begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$

GROUP-B

Answer any six questions

 $5 \times 6 = 30$

2. Find
$$\frac{\delta z}{\delta s}$$
 and $\frac{\delta z}{\delta t}$, if $z(x, y) = xy$, $x = s - t$ and $y = \sin(s + t)$.

5

3. In an electric circuit, containing a resistance (R), an inductance (L) and a capacitance (C) in series, a source of alternating voltage $E_0 \sin(\omega t)$ is applied. Calculate the current (i) at any instant.

5

CBCS/B.Sc./Hons./1st Sem./Electronics/ELSACOR02T/2019

$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$$

5 If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
, show that $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$.

$$A = \begin{bmatrix} 3 & i \\ -i & 3 \end{bmatrix}$$

$$x + 4y - z = -5$$
$$x + y - 6z = -12$$

$$3x - y - z = 4$$

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

(b) Show that the series
$$1^2 + 2^2 + 3^2 + \cdots + n^2$$
 is divergent.

10. Show that
$$e^{x}(\cos y + i\sin y)$$
 is analytic and find its derivative. 2+3

11. Solve
$$\frac{dy}{dx} = (4x + y + 1)^2$$
 if $y(0) = 1$.